Electrodynamics of a Cosmic Dark Fluid
نویسنده
چکیده
Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electroand magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.
منابع مشابه
Cosmological constraints on unifying Dark Fluid models
In the standard model of cosmology, dark matter and dark energy are presently the two main contributors to the total energy in the Universe. However, these two dark components are still of unknown nature, and many alternative explanations are possible. We consider here the so-called unifying dark fluid models, which replace dark energy and dark matter by a unique dark fluid with specific proper...
متن کاملViscous generalized Chaplygin gas as a unified dark fluid: including perturbation of bulk viscosity
In this paper, we continue our previous work of studying viscous generalized Chaplygin gas as a unified dark fluid but the bulk viscosity perturbations. By using the currently available cosmic observational data from SNLS3, BAO, HST, and recently released Planck, we obtain a constraint on the bulk viscosity coefficient: ζ0 = 0.0000138+0.00000614+0.0000145+0.0000212 −0.0000105−0.0000138−0.000013...
متن کاملConstraints on Generalized Dark Energy from Recent Observations
Effects of a generalized dark energy fluid is investigated on cosmic density fluctuations such as cosmic microwave background. As a general dark energy fluid, we take into consideration the possibility of the anisotropic stress for dark energy, which has not been discussed much in the literature. We comprehensively study its effects on the evolution of density fluctuations along with that of no...
متن کاملInsights on Dark Matter from Hydrogen during Cosmic Dawn
The origin and composition of the cosmological dark matter remain a mystery. However, upcoming 21-cm measurements during cosmic dawn, the period of the first stellar formation, can provide new clues on the nature of dark matter. During this era, the baryon-dark matter fluid is the slowest it will ever be, making it ideal to search for dark matter elastically scattering with baryons through mass...
متن کاملX-fluid and viscous fluid in D-dimensional anisotropic integrable cosmology
D-dimensional cosmological model describing the evolution of a perfect fluid with negative pressure (x-fluid) and a fluid possessing both shear and bulk viscosity in n Ricci-flat spaces is investigated. The second equations of state are chosen in some special form of metric dependence of the shear and bulk viscosity coefficients. The equations of motion are integrated and the dynamical properti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 8 شماره
صفحات -
تاریخ انتشار 2016